

INTRODUCTION

The TR Scan offers an innovative alternative to classical surface measurement. Its modular concept, allowing adaptation to each application, and its simple use, make it very efficient in the workshop. Because of its simplicity of use, the TR Scan can be operated by workshop personnel to get reliable results secured with minimum training. All measured surfaces can be treated according to current international standards such as ISO, DIN, JIS, ASME, CNOMO etc., as well as the upcoming ISO 25178 3D standard.

The TR Scan is completely designed and manufactured in Switzerland according to the highest quality standards. Robustness, reliability and longevity are part of our tradition. Trimos instruments have been used in workshops and labs for over 30 years.

The interchangeability of the measuring heads gives the possibility to select the most appropriate technology for each application. This flexibility allows the characterization of surfaces in numerous application fields, such as mechanical industry (all types of machined surfaces), car and aerospace industries, photovoltaics, as well as plastics, papers, imprints, fibrous materials, wood, abrasives, paint, cosmetics, etc.

MEASURING RESULTS FULLY COMPARABLE TO CLASSICAL SYSTEMS

COMPLIES TO ALL INTERNATIONAL STANDARDS

INTUITIVE, EASY TO USE INTERFACE

ROBUST INDUSTRIAL SYSTEM FOR THE WORKSHOP

POSSIBLE AUTOMATED MEASUREMENTS

MODULAR AND COMPACT CONCEPT

MEASUREMENT AND ANALYSIS WITHIN SECONDS

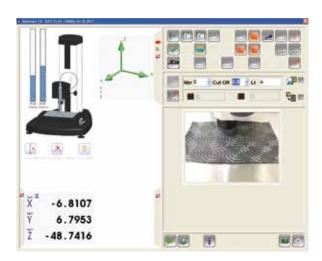
DESCRIPTION

Motorized table (XY)

DISPLAY/SOFTWARE

TRIMOS NANOWARE MEASURE

This exclusive software allows the handling of the instrument (positioning and configuration of all measurements).


Positioning in X,Y,Z is performed either automatically by predefined parameters or via the use of an intuitive joystick aided by a integrated positioning laser and a camera (optional).

Once positioned, measurements are taken automatically with one click or via the use of a manual size parameter in a few seconds.

INTUITIVE POSITIONING

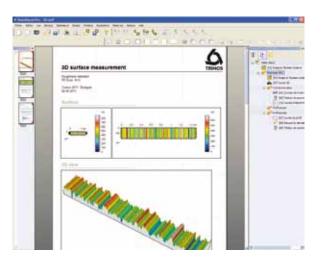
INSTANT MEASUREMENT

PROGRAMMABLE MEASUREMENTS WITH PICTURE

TRIMOS NANOWARE ANALYSIS

This software allows the analysis of all measured surfaces according to current international standards such as ISO, DIN, JIS, ASME, CNOMO etc., as well as the 3D standard ISO 25178.

Analysis can be performed automatically by the use of a template, or the user can have direct access to the raw data. The incorporated analysis software is powered by Mountains®, the most powerful and recognized 2D/3D surface analysis software available.

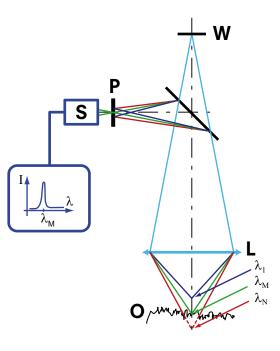

Reports are automatically generated during analysis. Any report can be used as a template later.

POWERFUL ANALYSIS

PROFESSIONAL REPORTING

SUITABLE MODULE FOR EACH APPLICATION NEED

COMPLIES TO ALL INTERNATIONAL STANDARDS

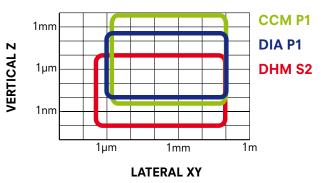


THE CCM TECHNOLOGY

Chromatic Confocal Microscopy (CCM) has been acknowledged worldwide as an accurate and reliable technique for non-contact surface measurement. A chromatic lens L generates the image of a point white-light source W as a continuum of monochromatic images located on the optical axis ("Chromatic coding"). A sample O is located inside the color-coded segment and its surface scatters the incident light beam. The backscattered light passes through the chromatic lens L in the opposite direction, and arrives at a pinhole P which filters out all wavelengths except a single wavelength, λM . The collected light is analysed by a spectrometer S. The sample position is directly related to the detected wavelength.

- High resolution
- Works on all types of sample materials
- Wide choice of measuring ranges
- Steep slope compatibility
- Coaxial (no shadowing)
- Recognised method by ISO 25178

CCM P1 MEASURING HEAD


CCM-P1 (support & spectrometer)

TA-MI-701 ÷ 713 Optical pen

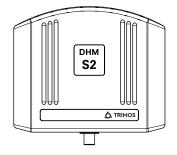
COMPLEMENTARY TECHNOLOGIES

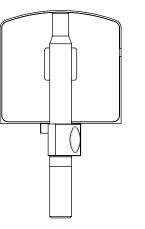
There is no universal technology for surface measurement. The modularity of the TR Scan allows the use of the best adapted head for each application.

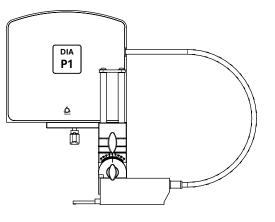
The diagram here below shows the application field of the TR Scan and of its various measuring heads according to the material structure.

MEASURING HEADS

DHM S1 & S2


- DHM Technology:
- Smooth, grinded and polished surfaces
- Steel, aluminium, titanium, silicon, gold, ceramics, glass
- High precision and speed, 2D/3D


CCM P1


- Chromatic Confocal Technology:
- Machined and rough surfaces, micro-structures
- Metals, plastics, abrasives, papers, textiles, cosmetics
- Large vertical range, all materials, 2D/3D

DIA P1

- Diamond Stylus Tip Technology:
- Roughness measurement with contact
- Classical roughness measurements (2D)
- Internal measurements

TECHNICAL SPECIFICATIONS

TR Scan		101	201	301
Horizontal measuring range X	mm	-	100	100
Horizontal measuring range Y	mm	-	-	100
Vertical measuring range Z	mm		240	
Measuring system resolution XYZ	μm		0.1	
Positioning accuracy XYZ	μm		1	
Rectitude of the guideways XY	μm	1.5		
Max weight of the part	kg		20	

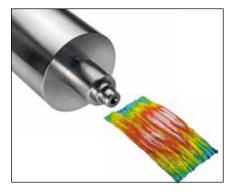
Measuring heads		DHM S1	DHM S2	CCM P1	DIA P1
Vertical resolution (Z)	nm	1	1	8 ÷ 22 ²⁾	10
Lateral resolution (XY)	μm	0.6	0.6	$0.9 \div 3.5^{2)}$	1
Typical measuring range Ra ¹⁾	μm	0.4	1.6	>200 2)	20
Vertical measuring range ¹⁾	μm	3	7	$130 \div 400^{2}$	350
Max. permissible errors Ra	%	1%	1%	$1\% \div 5\% ^{2)}$	5%
Repeatability (Ra, 1)	nm	< 0.1	< 0.1	$<5 \div 20^{2}$	9
Sample reflectivity	%	< 1% ÷ 100%	< 1% ÷ 100%	1% ÷ 100%	-
Field of view	mm	0.25 x 0.25	0.25 X 0.25	-	-

¹⁾ Values may differ depending on the surface texture

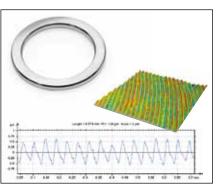
2) Objective dependent

DIAGRAM

STANDARD INSTRUMENT

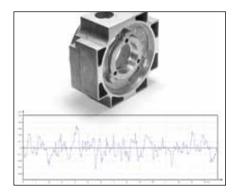

The TR Scan instruments are supplied as follows:			
Instrument according to specification (without measuring head)			
1 measuring head (DHM S1, DHM S2, CCM P1+TA-MI-701/TA-MI-708)			
PC with 1 TFT screen			
Nanoware Measure and Nanoware Analysis software (according to selected model)			
User's manual (750 50 0028 03)			

CODE NUMBER


TR Scan	Purpose	Meas. head	Axes	Software
TRS201CCM 700 405 20 11	Non-contact profiles measurements 2D	CCM P1	- 1 vertical axis Z - 1 horizontal axis X	Nanoware LT (2D analysis)
TRS201DHM 700 405 20 21	Extended profiles measurements 3D, metallic parts	DHM S2	- 1 vertical axis Z - 1 horizontal axis X	Nanoware STT (2D/3D analysis)
TRS301DHM 700 405 30 11	3D measurements, metallic parts	DHM S2	- 1 vertical axis Z - 2 horizontal axes XY	Nanoware STT (2D/3D analysis)

The TR Scan can also be specifically equipped according to the needs for each application (head(s) and measuring table, software). An exhaustive list of equipments can be found in the accessories section.

APPLICATIONS


Surface spinning measurement on a steel printing roll (DHM S2)

Verification of an aluminium ring joint gasket for the aircraft industry (DHM S2)

Texture analysis of a chemically polished titanium surface (DHM S2)

Classical 2D internal roughness measurement (DIA P1)