MarSurf ${ }^{\oplus}$ Surface Texture Parameters

Definitions
Real Surface separates a body from the surrounding medium. (EN ISO 4287) Stylus instrument enables two-dimensional tracing of a surface. The stylus is traversed normal to the surface at constant speed.
(EN ISO 3274) (ENISO 327) Traced profile is the enveloping profile of the
real surface acquired by means of a stylus instrument. The traced profile consists of form deviations, waviness and roughness
components. (EN ISO 3274 , DIN 4760) components. (EN ISO 3274, DIN 4760) Parameters usually are defined over the
sampling length. An average parameter estimate is calculated by taking the arithmetic mean of the parameter estimates from all the individual sampling lengths. For roughness profile
parameters the standard number of samp lengths is five.
For curves and related parameters (e.g. material ratio) the basis for the calculation of material ratio) the basis for the calculation of
the parameters' values is the evaluation length.
(EN ISO 4288)

Geometrical Product Specification ISO/TR 14638, DIN V 32950
Geometrical Product Specification (GPS) implies different kinds of standards dealing with the geometric characteristics of products during product design, manufacture, inspection, quality assurance, etc.
In the GPS matrix model, the lines In the GPS matrix model, the lines comprise
chains of standards dealing with one and hains of standards dealing with one and distance, form features, roughness, wavines etc. The columns (i.e. the links of the chains) hen are:

1. Drawing specifications (EN ISO 1302)
2. Theoretical definitions (EN ISO 4287,

11562, 12085 , and 3565)
3. Parameter definitions (EN ISO 4288, 11562,
12085, and 3565)
120 Assessment of d
and 12085)
5. Measurement equipment requiren (EN ISO 3274 and 11562) 6. Calibration requirements (EN ISO 5436 and Thest surface texture are detailed in parentheses ().

Traversing length I_{t} is the overall length traveled by the stylus when acquiring the traced profile. It is the sum of pre-travel, evaluation length I_{n}, and ost-travel
utoff λ_{c} of a profile filter determines which
wavelengths belong to roughness and which wavelengths belon
ones to waviness.
Sampling length I_{r} is the reference for roughness evaluation. It length is equal to
the cutoff wavelength λ_{c}.
The sampling lengths I_{p} and $\mathrm{l}_{w,}$ respectively, are the reference engths for the
and the W-profile evaluation.
Evaluation length In_{n} is that part of the traversing ength I_{t} over which the values of surface roughness evaluation length comprises five consecutive sampling lengths.
Pre-travel is the first part of the traversing length
Post-travel is the last part of the traversing length lt. Pre-travel and post-travel are required
for phase correct filtering.

Profile Filter

EN ISO 11562, ASME B46. 1
Profile filters separate profiles into long wave and short wave components. The λ_{c} profile filter separates the roughness profile from long wave components
(e.g. waviness)

Mean line is generated by a phase correct filter by calculating the weighted average for
each point of f he each point of the profile.
Weighting function indicates for each point
of the profile the assessment for of the profile the assessment factor with which the adjacent profile points enter into veraging (Gaussian curve) R -profile (roughness profile) represents
the deviations of the primary profile from the mean line of the primary profile from presenting the roughness profile, the mean presenting the roughness profile, the mean
line is the zero line.

MarSurf ${ }^{\circledR}$ Surface Texture Parameters
Mahr

Copyright © 2022 Mahr Inc. All rights reserved Due to technical improvements and/or further product developments, all of the specifications shown in this document are subject to change with
names listed are trademarks or trade names of their respective companies.

Profile Depth Pt_{t}

EN ISO 4287
 he sum or the eargest profile peak height and within the e evaluation length l_{n} (reference length). The reference length has to be stated. P-profilie (primary profile) is computed from
the traced profile the traced profile
by excluding the nominal form by using
the method of best fit leas scuares of the type indicated in the drawing, e.g. a linear regression line and
by excluding ultra-short wavelengths from the evaluation by using the λ_{s} comparability. (EN ISO 3274)

Waviness Height W_{t}
EN ISO 4287, ASME B46. 1
Waviness height Wt (total height of W-profile) is the sum of the largest profile peak height and the largest profile valley deth of the $\underset{\substack{\text {-profilie within } \\ \text { (reference lengh). }}}{\substack{\text { and } \\ \text {. }}}$
The evaluation length ln_{n} (reference length) has to be stated.
W-profile (waviness profile) is the mean line generated from the P-prof.file by the 1 coprofile fitier. The long wave profilie components
which belong to the form are excluded.

Selection of Cutoff λ_{c}
EN ISO 4288, ASME B46. 1

Periodic profiles \mathbf{R}_{sm} (mm)	Nonperiodic profiles		Cutoff λc (mm)	Sampl Eval length $\mathrm{Ir} / \mathrm{In}$ (mm)
	$\begin{aligned} & \mathbf{R}_{\mathbf{z}} \\ & (\mu \mathrm{m}) \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{R}_{\mathrm{a}}^{(\mu \mathrm{m})} \end{array}$		
over . 013 up to .04	$\begin{aligned} & \text { up to to } \\ & .0 \end{aligned}$	$\begin{aligned} & \text { upto to } \\ & .02 \end{aligned}$. 08	. 08
over. 04 up to. 13	$\begin{aligned} & \text { over } .1 \\ & \text { up to } .5 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { over. } 02 \\ \text { un to. } \end{array}$. 25	$\begin{aligned} & .251 \\ & .125 \end{aligned}$
over. 13 up to .4	over . 5 up to 10	$\begin{aligned} & \text { over. } 1 \text { up } \\ & \text { to } 2 \end{aligned}$. 8	.8/4
over . 4 up to 1.3	$\begin{aligned} & \text { over } 10 \\ & \text { up to } 50 \end{aligned}$	$\begin{aligned} & \text { over } 20 \\ & \text { up to } 10 \end{aligned}$	2.5	$\begin{aligned} & 2.51 \\ & 12.5 \end{aligned}$
over 1.3 up to 4	$\begin{aligned} & \text { over } 50 \\ & \text { up to } 200 \end{aligned}$	$\begin{aligned} & \text { over } 10 \\ & \text { up to } 80 \end{aligned}$	8	8/40

Mean Roughness $\mathbf{R}_{\mathbf{a}}, \mathbf{R}_{\mathbf{q}}$ EN ISO 4287, ASME B46.1
Roughness average Ra_{a} is the arithmetic verage of the absolute values of the

$$
\mathrm{R}_{\mathrm{a}}=\frac{1}{\mathrm{~L}} \int_{0}^{\mathrm{L}}|Z(\mathrm{x})| \mathrm{dx}
$$

Root mean square (RMS) roughness R_{q} is the oot mean square average of the roughness

$$
R q=\sqrt{\frac{1}{1} \int_{0}^{1} Z^{2}(x) d x}
$$

$Z(x)=$ profile ordinates of the roughness
R_{a} is also called $A A$ and $C L A, R_{q}$ also RMS.

Roughness Depth $\mathbf{R}_{\mathbf{Z}} \mathbf{R}_{\text {max }}$ EN ISO 4287, ASME B46. 1
Single roughness depth R_{zi} is the vertical distance between the highest peak and the
deepest valley within a sampling length. Mean roughness depth R_{z} is the arithme Mean roughness depth R_{2} is the arthmetic R_{zi} of consecutive sampling lengths:

$$
R_{z}=\frac{1}{n}\left(R_{z 1}+R_{z 2}+\ldots+R_{z n}\right)
$$

The R_{2} definition is identical to the definition in DIN
4768:1990. The ten point height R R as well as the 768:1990. The ten point height Rz_{2} as well as the
arameter symbol Ry of ISO $4287: 1984$ have been parameter
canceled.
Maximum roughness depth $\mathrm{R}_{\text {max }}$ is the largest single roughness depth within the
evaluation length evaluation lengt
(ff.EN SO 4288; Rmax is also called R21 max
$\underset{\sim}{\frac{R}{4}}$

Rsk, Rku
EN ISO 4287, ASME B46. 1
Skewness $\mathrm{R}_{\text {sk }}$ is a measure of the asymmetry of the amplitude density curve. A negative
skewness value indicates a surface with good bearing properties.

$$
\begin{aligned}
& \begin{array}{l}
\text { Rsk<0 } \\
\begin{array}{l}
\text { Rk }=0 \\
R_{\text {R }}>0
\end{array}
\end{array}
\end{aligned}
$$

$\mathrm{R}_{3 k}=\frac{1}{\mathrm{R}^{3}} \frac{1}{1} \int_{0}^{z^{3}}(\mathrm{x}) \mathrm{dx}$

Kurtosis R_{ku} is a measure of the peakedness of the amplitude density curve. For a profil Rku is 3 .

Skewness and Kurtosis are strongly influenced by isolated peaks and valleys, fact which reduces their practical importance.

Peak Height, Rv Rp
EN ISO 4287, ASME B46. 1
R_{p} is the height of the highest profile peak R_{p} is the height of the highest profile peak
of the roughness profile within one sampling Iefgth.
According
According to ASME, the R_{p} mean value (average calculated
length) is called R_{pm}.
R_{v} is the depth of the deepest profile valley of the roughness profile within one sampling ength. So far, the parameter symbol R_{m} was used in place of Ry.
The sum of $R_{p}+R_{v}$ is the single roughness depth $\mathrm{Rzi}^{\text {zi }}$

Base Roughness Depth R3z Daimler Benz Standard 31007 (1983) Single roughness depth $\mathrm{R}_{3 z i}$ is the vertical distance of the third highest peak to the third deepest valley of the roughness profile within
a sampling length $I_{\text {r }}$ a sampling length I
Base roughness depth R_{32} is the mean value of the single roughness depths $\mathrm{R}_{3 z}$ of five consecutive sampling lengths Ir:
$R_{37}=\frac{1}{5}\left(R_{371}+R_{322}+R_{373}+R_{374}+R_{335}\right)$ Profile peak and profile valley must exceed
certain vertical and horizontal minimum certain
values.
 t_{p} is the ratio expressed in percent of the
material-filled length to the evaluation length I_{n} at the profile section level c.
$\mathbf{R}_{\mathrm{mr}}=\frac{1}{\mathrm{I}_{n}}\left(\mathrm{~L}_{1}+\mathrm{L}_{2}+\ldots+\mathrm{L}_{\mathrm{n}}\right) 100[\%]$
The profile section level c is the distance between the evaluated intersection line and he specified reference line Cref
Material ratio curve (Abbott-irestone curve)
the profile section level c.
The material ratio can also be evaluated on the P - or the W -profile (P_{mr} or W_{mr}).

Rk, Rpk, Rvk, Mr1, Mr2
EN ISO 13565-1 and -2
The roughness profile as per $13565-1$ is
generated by a special filterin generated by a special intering technique
minimizing profile distortions due to deep valleys in plateau profiles. A straight line divides the Abbott-Firestone curve into three computed as per 13565-2. omputed as per 13565 -
oughness core profile. R_{k} is the depth of the
Reduced peak height $\mathrm{Rpk}_{\mathrm{p}}$ is the mean height of the peaks protruding from the roughness core profile.
Reduced valley depth Ryk is the mean depth f the valleys protruding from the roughness core profile.
r_{1} and M_{r} are the smallest and the highest
material ratios of the roughness core profile.

Rsm, $\mathrm{R}_{\Delta \mathrm{q}}$
EN ISO 4287, ASME B46.1
Mean width of profile elements R_{sm} is the arithmetic mean value of the widths of profile elements of the roughness profile. A profile element consists
RSm $=\frac{1}{n} \sum_{i=1}^{n} x$ of a profile peak and an
adjacent profile valley. Ar is an older designation A_{r} is an ol
for Resm.
Root mean square slope $\mathrm{R}_{\Delta q}$ is the root mean square average of all local profile slopes.
$R \Delta q=\sqrt{\frac{1}{1}} \int\left(\frac{d z}{d x}\right)^{2} d x$
The local profile slope is computed via a leveling function
influence of noise.

HSC Peak Count RP prEN 10049, ASME B46. 1 Peak count RP c is the number of roughness profile elements (see Rsm) per cm which consecutively intersect the specified upper
profile section level C 1 and the lower profile proction ection cel 2 .
section lever
High spot count HSC is the number of oughness profile peaks per cm exceeding he specified upper profile section level c1

